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ABSTRACT

Randomly amplified polymorphic DNA (RAPD) analysis was used to study the

impact of a historical translocation event on populations of white-tailed deer in Georgia.

The technique may also serve as a model by which management practices for other rare

species can be studied. Populations from an original translocation source in Wisconsin,

another Wisconsin population, and three populations in Georgia were sampled during

management hunts. RAPD PCR was used to produce a genetic fingerprint for individuals

of each population. Resulting band data were analyzed using PHYLIP genetic analysis

software. A consensus tree of 100 bootstrapped replicates showed significant similarity

between Georgia populations that received translocated deer and the original Wisconsin

source populations. This indicated historical genetic impact on a local scale; however,

other "native" Georgia populations which did not directly receive translocated individuals

showed no evidence of genetic impact. Impact of the translocation was detected in local

deer populations as a significant difference between Georgia "native" populations and

Georgia populations that received translocated individuals. Low gene flow due to white-

tailed deer dispersal behavior is likely to reduce the regional impact of translocations to a

local scale.
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I. Introduction:

By the early twentieth century, many historically abundant wildlife species were

at critically low population levels. Even the now ubiquitous white-tailed deer population

was only 1-2% of its pre-Columbian density before European settlement of North

America (Wing, 1965; Noble 1966). Most early efforts to reestablish rare species

focused on translocation and reintroduction as strategies to create stable metapopulations.

Translocation strategies continue to be in widespread use but their success is uncertain

and methods are often based on more conjecture than scientific evidence (Griffith et al.

1989; Falk and Olwell, 1992; Mistretta, 1994; Lomolino and Channell, 1995; Doremus,

1999). However, using molecular tools it is now possible to study the evolutionary

history of a species as well as gene flow and genetic diversity within a particular

population (Mistretta, 1994). The new techniques give researchers more precise

indicators of translocation success and allow substantiation of methodologies for future

planning and implementation of wildlife management programs or recovery plans for

endangered species.

Effective translocations and stocking efforts require extensive study and logistics,

often involving not just target species but also various political, biological, and social

issues (Tear and Forester, 1992; Falk and Olwell, 1992; Mistretta, 1994; Lomolino and

Channell, 1995). Species management through translocation and restocking involves a

complex mix of strategic issues. For example, should efforts be concentrated on

maintaining currently viable populations or on those already suffering from inbreeding

depression? In addition, no general school of thought exists for translocating several
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small populations versus a single large translocation. Each case should be studied

independently to determine the best strategy (Lomolino and Channell, 1995).

Population collapse has been studied using the island biogeographic model, which

considers isolated populations as insular in their genetic behavior. It was observed that

many isolated populations collapse in the center of their range and persist longest on

habitat peripheries. While somewhat counterintuitive, the implications for release

location can be critical (Lomilino and Channell, 1995). Finally, in any reintroduction

effort, monitoring of both source and translocated populations should be continued long-

term to assess the success of the project with a focus on changing whatever conditions led

to population decline initially (Falk and Olwell, 1992). Lubow (1996) used mathematical

modeling to optimize translocations based on population size of both origin and

destination populations. Species survival may then be predicted as a function of the

number of individuals moved, size of preserve and growth rate. In many cases,

translocation can be an inexpensive last hope for many species previously written off as

hopeless.

At current population levels, white-tailed deer afford a practical opportunity to

study gene flow and genetic interaction between native and translocated populations.

White-tailed deer are plentiful and samples are easy to obtain. There is little

complication in sacrificing or working with the animals, as recreational and management

hunts are common.

Dispersal behavior in white-tailed deer is particularly relevant to restocking

efforts. Deer establish home ranges, which vary both spatially and temporally. For

example, in a molecular study using beta-hemoglobin and several other proteins,
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genetically similar deer populations did not correspond to traditional management

boundaries or topographic barriers as expected. Instead, genetic differences between

populations reflected annual movement of deer and localized allelic differences. Gene

flow, which occurs through dispersal of individuals between genetically distinct

populations, is primarily due to the natural dispersal of first year male bucks. Of

dispersing individuals, 64%-80% tend to be yearling males, while less than 20% are

young does. This dispersal behavior may be caused by sexual competition for mates

(Marchinton and Hirth, 1984; Nelson, 1993).

Smith et al. (1984) recommended that deer populations be viewed as a series of

small subpopulations with varying allele frequencies over short times and distances.

Likewise, Scribner et al. (1997) found large fluctuation of genetic subpopulations over

time and distance. Population changes can be genetically or environmentally influenced,

and generally, high levels of heterozygosity in a population correlate to an overall

increase in fitness (Smith et al. 1984).

In addition to protein level research, there have been numerous recent studies,

using polymerase chain reaction (PCR) to conduct taxonomic and population genetic

analyses on deer translocations. Ellsworth et al. (1994a) used mitochondrial DNA from

deer and restriction enzymes to study gene flow and dispersal as well as overall genetic

impact of translocated deer in the southeast. This study found that regional history

dictated genetic variation. Deer populations in the south are older, owing to less recent

disturbance from glaciation, unlike the northern subspecies. Thus, southern deer have

higher genetic variation than their northern counterparts, resulting from a longer time for

genetic divergence to occur. Fragmentation and isolation of southern populations has
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also led to differences in mtDNA. Due to the matriarchal structure of deer populations

and dispersal primarily through young males, mtDNA tends to remain stable within

populations in spite of human influence and translocations (Ellsworth et al. 1994a;

Scribner et al. 1997). If translocations had an effect on recipient deer herds, it would be

expected that genetic variation in a herd receiving relocated individuals would reflect the

introduction of the new genotypes.

This was not the case in a DNA study by Ellsworth et al. (1994a, 1994b), which

concluded that the recovery of deer herds in the southeast resulted from natural re-

establishment and management of native deer rather than direct offspring or hybrids from

translocations. Leberg et al. (1994) in a similar study using protein allozymes in deer and

wild turkeys found that subpopulations receiving translocated individuals were more

genetically similar than subpopulations not affected by translocations. This would

indicate successful reproduction and gene flow from translocated deer and turkey. The

number of individuals translocated was not a significant determinant of genetic impact.

Even a few non-native individuals were found to have an impact on local subpopulations.

Overall, translocations were seen to have an impact on specific subpopulations where

they were released but not on overall local populations due to low gene dispersal over a

long distance.

Conclusions from the two studies seemingly contradict one another. However,

the two research groups published a third joint paper, in which they reanalyzed the data

from both studies and drew more unified conclusions. Ellsworth et al. (1994a, 1994b)

found minimal regional effects from translocations. Neighboring populations were more

genetically similar to one another due to dispersal between local populations.
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Mitochondrial DNA and isozyme variation was similar suggesting common evolutionary

influences for both types of markers. Finally, mtDNA variation in deer from around the

southeast is similar to that of other related taxa. The similar mitochondrial genetic

variation can indicate a common historical background across different species and

would indicate a natural mutation rate rather than any impact from translocation. The

discrepancy with Leberg et al. (1994) arose from sample choice and type of analyses used

for the study rather than any fundamental disagreement in data (Leberg and Ellsworth,

1999). Both regional and long distance translocations seem to have a localized impact,

but due to low female dispersal and site philopatry there is little gene dispersal to

neighboring populations. From a management perspective, restocking may be beneficial

but the genetic impact of this strategy is only felt at the subpopulations.

Small but genetically distinct local populations may be overwhelmed by an

indiscriminant translocation event. Dispersal is unlikely to restore the genetic diversity

lost when the source population overwhelms the recipient population, making the local

area more genetically homogenous. Dispersal is also less likely to maintain diversity in

endangered populations, which are more likely to suffer reproductive isolation (Leberg

and Ellsworth, 1999). Also, if translocations take place over great distances, additional

problems may arise from low survival rates of translocated individuals placed in areas for

which they are not adapted (Leberg and Ellsworth, 1999; Day et al. 1999). Ideally,

initiation of any restoration project would therefore involve conservation planning to re-

establish native remnant populations. Detailed genetic studies of both source and

destination populations should occur before any restocking to avoid disruption of the

genetic structure at the local level (Leberg and Ellsworth, 1999; Mistretta, 1994).
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Leberg and Ellsworth (1999) suggested that future studies should investigate the

rate and success of gene introgression from translocated deer into native herds.

Additionally, there has been no direct comparison of genetic diversity from northern and

southern populations. My research was designed to address both areas using the

molecular technique of randomly amplified plymorphic DNA (RAPD) PCR to study

white-tailed deer translocated from Wisconsin to Georgia.

Benefits involved with RAPD analysis are many, and application of this process

to the study of molecular taxonomy and population genetics has been fruitful for a range

of genetic analyses including taxonomic differentiation, gene flow and hybridization,

paternity and kinship, and genetic mapping (Hadrys et al., 1992; Williams et al., 1993;

Lynch and Milligan, 1994; Comincini et al., 1996; Kostia et al., 1996). RAPD PCR uses

arbitrary, short oligonucleotide primers to produce diagnostic polymorphisms for

fingerprinting genomic DNA. The RAPD technique arose as an alternative to expensive

and time-consuming restriction fragment length polymorphism (RFLP) studies and uses

primers that are able to amplify DNA fragments with good reproducibility. Bands are

visualized, after agarose gel electrophoresis, using ethidium bromide and ultraviolet light.

Markers can detect even single base pair mutations in template DNA, as well as deletions

in the primer binding site or insertions between binding sites which elongate the binding

template strand but allow it to remain short enough to amplify (Williams et al., 1990).

These short arbitrary primers are able to provide a characteristic fingerprint for any

genome, and protocols for their use are defined and supported by numerous studies

(Williams et al., 1990; Welsh and McClelland, 1990; Caetano-Anolles et al. 1991;

Williams et al., 1993).
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Unlike previously used codominant genetic markers, RAPD fragments are

inherited in a simple dominant-recessive fashion, which can only detect presence or

absence of an allele at a given locus. Previously used polymorphisms codominant

inheritance can detect heterozygotes. However, RAPD's resolve many loci for a given

individual simultaneously. This differs from RFLP's also, which detect few loci but are

able to find multiple alleles at each locus (Black, 1993; Williams et al., 1993).

There is an array of variables involved in RAPD analysis, which must be

optimized to avoid discrepancies in data. Their variables make RAPD analysis inherently

sensitive to perturbations or imprecise technique. The specificity of results to polymerase

and fhermocycler brands used also make comparison of data between labs or between

studies difficult. Meunier and Grimont (1993) recommended extreme caution when

assuming gel data in its raw form can be used by another research facility. Rather, they

recommended that RAPD gels should not be cataloged in a library or database for future

studies. The technique could, however, be used independently as a tool for an individual

study.

RAPD amplification conditions typically use lower annealing temperatures than

would be used for a primer with known sequence, and cycle profiles must be determined

empirically to obtain consistent results. Williams et al. (1993) recommended the

following general profile:

25uL initial reaction volume

94°C lmin. - denaturation of template DNA
36°C lmin. - primer annealing to ss template DNA
72°C 2min. - elongation of regions flanked by annealing primers

X 45 cycles
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The products of this reaction are variable depending on the concentration of genomic

DNA used, and, as such, the isolation protocol should be uniform throughout the study.

Isolation products may also be quantified using a spectrophotometer to ensure uniformity

throughout the sample. Generally, RAPD products reproduce well using as little as 1 fig

of template DNA. Less than this may yield irreproducible products, while too great a

quantity of template DNA results in low band clarity and smearing when stained

(Williams et al., 1993).

RAPD analysis requires a number of assumptions. First, interpretation of gel

bands must be unambiguous. The assumption is made that no two markers will co-

migrate to the same position on a gel; thus, each band represents a single locus and no

experimental errors are made during scoring. Second, each locus is treated as a two-

allele system scored as either present or absent. This scoring system is based on the

dominance of RAPD markers, which are scored recessive if a particular band is not

amplified. Reasons behind band absence may be due to primer site deletion or base

insertions, making the fragment unamplifiable. The resulting alleles are assumed to

follow Hardy-Weinberg models for sexual diploid populations where (p) is defined as the

proportion of homozygous dominant alleles in a population and (q) is the proportion of

homozygous recessives and (q = 1 - p). Frequency of markers in a population can be

accurately estimated using RAPD primers. Markers should be rare enough that they do

not occur commonly in each population. Gene diversity is also detectable as RAPD's

typically amplify non-coding DNA. Lynch and Milligan (1994) used RAPD's to

calculate genetic distance and relatedness between populations, as well as, genetic

diversity. The same study recommended using a greater number of loci for calculations
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and larger sample sizes, with the same number of samples for each study population.

This compensates for the loss in accuracy from RAPD compared to those techniques

using codominant markers.

Analysis of RAPD data may be accomplished using any of several computer

software packages. Felsenstein (2000) developed the PHYLIP 3.6a package, which is in

wide use for RAPD data, and many other molecular techniques. RAPDistance 1.04, a

RAPD-specific package, and PAUP, a multi-use package similar to PHYLIP are also

used widely (Armstrong et al., 1996; Swofford, 2000). These packages allow

bootstrapping, calculation of genetic distance matrices and synthesis of phenetic trees.

Trees can be drawn to scale using a variety of software as well, including Tree View

1.5.2 (Page, 1998).

My study, used RAPD PCR techniques is an attempt to determine the effects of a

historical translocation of white-tailed deer. During the first half of the twentieth century,

the white-tailed deer populations were decimated in the southeast due to over hunting and

poor management. Throughout the region, aggressive restocking efforts were made in an

attempt to augment remnant native herds. In 1962, 639 deer of both genders were

translocated from central Wisconsin to areas around central-west Georgia (Jeffries,

1975). Source location for many restocked individuals was Sandhill Game Farm in

Wood County, Wisconsin owned by Wallace Grange. In 1963, the farm was bought by

the State of Wisconsin and renamed Sandhill Wildlife Area (Wayne Hall and Mark

Randall; personal communication). The translocated deer, Odocoileus virginianus

subspecies borialis, are a northern subspecies. Typically the northern type are
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morphologically larger, heavier deer in comparison with the native southern subspecies

O. virginianus subspecies virginianus.

One destination for translocated deer was Harris County, inside what is now

Callaway Gardens (see figure 1). The Gardens (G) sample population was taken from

inside an area enclosed for the last twelve years by a deer resistant fence. Presumably,

the fencing has somewhat restricted gene flow, although damage and failure to close

gates may have resulted in some migration of deer into and out of the area. A second

sample group from the same area is called Harris (H), with individuals sampled from

outside the fenced enclosure but still in the immediate area.

Northern deer subspecies translocated from Wisconsin to Harris Co. Georgia also

display greater seasonal migratory behavior than do southern subspecies. This difference

in temporal dispersal pattern has direct implications for gene flow between translocated

and native populations in the south. While southern subspecies tend to display more

fixed ranges, northern deer may travel more and disperse among local southern

populations. Increased gene flow into remnant native populations would be expected if

translocated northern populations were moving over greater distances and interacting

with native herds (see figure 2). For this reason, a third population of deer from Marion

County (M) served as a control (figure 1). This population did not receive translocated

northern deer and it is approximately 50 miles from the Harris County experimental

populations (see figure 1).
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Figure 1.

Population locations in Marion County (M) and Harris County (G and H).
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Figure 2.

Detail of Gardens and Harris deer source location.

From a broader perspective, the successful recovery of southern deer populations

from remnant, isolated native populations may be used as a model for future recovery

plans for currently endangered ungulate populations. The success or failure of historical

translocations and the genetics involved may shed light on the current use of these

strategies and shape management and recovery plans. Today's molecular tools enable the

direct observation of gene flow and are recommended to be part of any endangered

species recovery plan (Mistretta, 1994; Lubow, 1996). The effectiveness of RAPD PCR

for quick and inexpensive assessment of population restocking efforts could be used to

examine other historical species management techniques for rare or endangered species.
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It may also be an effective method to identify the best source and recipient populations in

the field during current or future translocation efforts.

Two hypotheses are used to steer this study. In one case, the translocation event

would be regarded, in hindsight, as a success in reestablishing local native herds, while

the opposite would indicate the translocation was unnecessary and had no significant

genetic effect on local herds.

Hi - Deer populations in Harris Co., which were restocked with translocated

individuals from Wisconsin, are more genetically similar to a local native

population than source populations of restocked individuals.

H2 - Deer populations in Harris Co., which were restocked with translocated

individuals from Wisconsin, are more genetically similar to source populations

than to a local native population.

II. Methods:

A. Tissue Handling and Storage:

All samples were collected between February and November 1999. Muscle,

blood, and liver samples were obtained from 100 individuals inside a partially enclosed

area of Callaway Gardens (G), which received translocated deer from Sandhill,

Wisconsin in 1962. Muscle, blood, and liver were also obtained from 50 individuals in

surrounding Harris County (H) and 10 individuals from Marion County (M) used as an

outgroup. Muscle and liver samples were obtained from 50 individuals inside the

Sandhill Wildlife Management Area (S) in central Wisconsin (original source location),

and approximately 50 muscle samples were obtained from game check stations across the

northern peninsula of Wisconsin (W). Tissue was taken from individuals of both genders

and all age classes at various times of year. Muscle and liver samples were stored in

sterile vials and fresh-frozen to negative 80°C. Blood samples were stored in tubes
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treated with heparin as an anticoagulant and separated into cellular and plasma fractions

before storage at negative 80°C. Tissue samples were kept on ice for several hours in the

field before freezing. Each sample was labeled with a number and letter identifying from

which population it was gathered (i.e.- 45H, 67G). Muscle samples were taken from the

abdominal region after the animals were sacrificed either for herd management or

recreation hunts.

B. DNA Isolation Procedure:

Muscle tissue comprises the bulk of samples from each location and so was used

for isolation of genetic material. DNA was isolated using DNeasy™ tissue isolation kits

(Qiagen catalog number 69504). Each kit uses tabletop centrifuge tubes and proprietary

buffer solutions to isolate known quantities of DNA from animal tissue (Figure 3). The

DNeasy™ system uses silica gel membranes to collect DNA without organic extraction or

ethanol precipitation (Figure 4.). Differences in template DNA isolation affect primer

annealing during PCR and can be particularly problematic when ethanol precipitation is

used during isolation. Treatment with RNase must also be uniform throughout the study

to avoid inconsistencies. Cells are lysed and buffers, which optimize conditions for DNA

binding to the silica membrane, are applied. After centrifiigation and selective binding of

DNA to the membrane, contaminants are removed in two wash steps before DNA is

eluted for final storage and use. Typical expected yield for this procedure is 15-20u,g of

DNA per sample. DNA fragment size ranges up to 50kb but 30kb segments dominate

(Qiagen, 1999). This DNA isolation procedure was chosen based on purity and
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consistency of resulting DNA for PCR and on time savings compared to other methods

(Figure 5).

DNmpltaa*
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Figure 3.

Schematic of the DNeasy™ DNA isolation procedure. (Figure taken from Qiagen, Inc.)

Figure 4.

DNeasy™ spin column used in isolation procedure. (Figure taken from Qiagen, Inc.)
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Figure 5.

Comparison chart of various isolation steps (figure taken from Qiagen, Inc.).

Muscle samples were thawed at room temperature and small sections were removed.

Care was taken to prevent cross contamination between different samples. Muscle cells

are multinucleate and are interspersed with fibrous connective tissue making lysis more

difficult. To avoid clogging the silica isolation membranes a maximum of 12-15mg of

tissue was used.

1. Each tissue sample was placed in a sterile 1.5ml microcentrifuge tube. Tissue was

lysed using 20ul of Proteinase K and 180ul of proprietary buffer ATL added to each

tube. Samples were incubated at 55°C in a shaking water bath overnight.
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2. After lysis, samples were treated with 4ul of RNase to remove any residual RNA,

which could interfere with PCR.

3. 200ul of proprietary buffer (AL) was added to each sample and incubated for lOmin.

at 70°C on an MJ Research PTC- 100 thermal cycler.

4. 200ul of absolute ethyl alcohol was then added to each tube.

5. The entire mixture was then pipetted into a DNeasy™ spin column and centrifuged

for lmin. Column flow through was discarded.

6. The column was placed in a new collection tube and 500ul of proprietary buffer

(AW1) was added and centrifuged for lmin. Flow through was discarded.

7. Step 6 was repeated using proprietary buffer (AW2) and centrifuged for 3min.

8. Isolation columns were placed in final collection tubes and 200 ul of proprietary

buffer (AE) was placed in each tube. Tubes were centrifuged for lmin. This last step

was repeated and the collection tube now containing eluted DNA was labeled and

stored at -20°C.

Initially, eluted DNA samples were then quantified using a Hoefer Dyna-Quant™

spectrophotometer. However, the confirmation proved difficult and was abandoned due

to unexplained fluctuations in control samples and calibration of the spectrophotometer.

It was assumed that expected yield, as standardized by Qiagen Inc., was approximately

correct for the actual amount ofDNA isolated from each sample.
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C. Polymerase Chain Reaction (PCR):

The RAPD PCR technique was used for this study. Template DNA was obtained

using the procedure above. RAPD primers were obtained from Operon Technologies Inc.

in 10-mer kits. Primer sequences were randomly chosen by Operon Inc. All primers are

10 base pairs in length with 60-70% G+C content and are designed with non-

complementary ends to avoid self-annealing. Primers were lyophilized for storage and

resuspended in TE buffer at pH 8.0. Initial scans to optimize primer/template systems

were done using Operon kits OPA, OPC, OPD, OPE, and OPT. Each kit contained 20

different sequences.

Klein-Lankhorst et al. (1991) found that by changing PCR conditions or by using

different DNA isolation procedures, different banding patterns were produced. However,

unique fragments were still amplified for each primer, and even single base changes were

detected. This inherent variability in product may result from PCR inconsistencies,

template to primer concentration ratio and annealing temperature, all of which require

consistent protocols and experimental design throughout a study. Failure to maintain

consistent techniques or reaction conditions results in irreproducible results and greater

error in analysis of data (Perez et al., 1998).

To increase the reproducibility and usefulness of results a variety of PCR

conditions were attempted before the system was optimized. Initial scans using various

primer, template, and buffer concentrations, and three different types ofDNA polymerase

were tested. For initial scans, DNA from three deer in the Callaway Gardens (G)

population (206G, 209G, 79G) were used as template for all primers in each of the five

Operon Technologies kits listed above. Primers yielding two or more strong bands when
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resolved on 1 .4% agarose gels were then chosen as possibilities and run again, using an

array of DNA from four sample populations (Sll, S15, W10, Wll, 200G, 170G, 48H,

59H). This was done to determine which amplification products showed variation across

all experimental populations. Comparison of gels for bright, clear, multiple bands, which

were also somewhat variable among sample populations yielded a final selection of four

primers as optimum for this project (table 1.). DNA from 16 individuals was isolated

from each population with the exception of the Marion County out-group of which only

eight individuals were used.

Table 1.

Operon Technologies, Inc. primer sequences used for final analysis.

Operon

RAPD
Primer Primer Sequence

OPC-6 GAACGGACTC
OPC-8 TGGACCGGTG
OPC-9 CTCACCGTCC
OPT-4 CACAGAGGGA

The DNA polymerase chosen for optimal amplification products was Taq

DNApol from Qiagen Taq PCR Master Mix Kit™ (Qiagen catalog number 203443).

This product is a recombinant 94-kDa polymerase isolated from Thermus aquaticus

expressed in E.coli. The polymerase extends DNA at 2-4kb/min at 72°C and has a half-

life of lOmin. at 97°C. This Taq has 5 '-3' exonuclease activity allowing greatest

reproducibility in amplified fragments. Taq was shipped and stored suspended in a 2X

concentrated master mix containing proprietary PCR buffer, MgCl2 , and 400um of each

dNTP (see figure 6).
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Figure 6.

PCR reproducibility comparison gel (figure taken from Qiagen, Inc.).

All PCR preparations were carried out at room temperature inside a sterile fume

hood, using aseptic technique to prevent contamination. Materials, equipment, and lab

surfaces were sterilized by autoclaving and/or ultraviolet light before use. PCR

ingredients were stored at -20°C and thawed at room temperature. 12.5ul of Taq Master

Mix was placed in sterile reaction tubes along with 10.5ul of sterile deionized water. To

this, lul of sample DNA template (15-20|ag/200ul) and lul of primer DNA (25pmol/ul)

were added. This PCR mixture was then pulse vortexed to eliminate local variation in

reactant concentration before thermocycling.

Amplification was accomplished using an MJ Research PTC- 100 thermal cycler

equipped with a thermocoupled, heated lid. A heated cover removed the need for mineral

oil overlays in the PCR reaction tubes. PCR thermal cycling used a cold start. Transition

times for thermal cycling steps were ramped from one to another as quickly as allowed

by the cycler. Cycling profile was as recommended by Williams et al. (1990) (table 2).
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Table 2.

PCR thermal amplification profile.

Melting Phase 94 C 1min.

Annealing Phase 40 C 1min.

Elongation Phase 72 C 2min.

X 45 cycles

Hold Phase 0C 10-20 hr.

After amplification, PCR products were stored in original reaction tubes at -20°C for

various lengths of time before electrophoresis.

D. Agarose Gel Separation:

The gel media used Bio-Rad™ Analytical Grade Agarose (catalog number 1 62-

0125) melted in a standard microwave oven in glass Erlenmeyer flasks. Agarose was

diluted in IX TBE buffer solution prepared to 5X concentration in 1L alloquots (54g Tris

Base, 27.5g Boric Acid, 20ml 0.5M EDTA at pH 8.0, up to 1L with deionized water).

Initial gels to confirm the presence of isolated DNA used 0.7% Agarose prepared

using 50ml gel molds with small wells (0.35g agarose, 50ml TBE buffer, 2.5ul ethidium

bromide). Loading assay for the 50ml gels used 5jil of sample DNA, 13jil TBE buffer,

and 2ul loading dye. Gels were run using an external electrical power pack for 2 hours at

80mA.

Larger 1.4% gels were used to separate PCR material for visualization and

analysis. These 200ml gels were prepared using 2.8g agarose, 200ml TBE, lOul

ethidium bromide with 40ul gel wells. Loading assay for the analysis gels used 12.5ul
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PCR sample, 22.5|il TBE, and 5ul loading dye (0.5u.g/ml). These gels were run at

160mA for 4 hours. Eight samples of PCR product were run on each gel along with two

control samples (G-80, S-19), a lOOObp ladder, and a lOObp ladder. Ladders were

prepared by Amresco™ (code number K181 and K180 respectively). A control sample,

containing each PCR reactants except template DNA, was also included on each gel.

These controls were prepared simultaneously with each batch of PCR product to rule out

contaminants as contributors to any amplification products.

After each electrophoresis run, gels were removed from their trays, placed on an

ultraviolet light box with a metric scale, and photographed using a Polaroid™ camera

equipped with a light proof sleeve and red filter. Exposure was from 6-8 seconds

depending on band brightness and photo resolution. F-stop was set for F-16.

Photographs were then cataloged and stored before gel disposal.

E. Band Scoring:

Before scoring, each gel was "calibrated" using migration distance, measured by

caliper, of the known 100 base pair ladder. Migration distance plots of each gel were

created using semi-log scale with migration distance on the x-axis and known molecular

weight ladder on the y-axis (figure 7). Semi-log scale appropriately reflects the nature of

DNA fragment migration through the gel.
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Figure 7.

Gel ladder migration plot.

Subsequent band scoring proceeded, using ladder migration plots to fix the known

rate of migration for each gel. Unknown bands were then compared to the linear ladder

plot to determine approximate fragment length. In this way, variation in fragment length

could be determined accurately for scoring between bands of similar molecular weight.

There were two discrete strategies used to score band data. The second technique was

ultimately used for analysis based on overall accuracy of data.

In the initial scheme, gels for each primer and population were examined visually

to identify the best bands for subsequent scoring. Bands were identified based on

brightness, which was pivotal for reliable scoring, and consistency of reproduction. The

identity of each band was determined using the calibration technique described above. In

this way, 4-8 bands were identified in each primer set for scoring. Individuals were

recorded as either showing a given band or not.
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This approach proved problematic for dealing with bands that had similar

migration distances for different samples. Discerning bands that differed by only a few

base pairs involved too much subjectivity for scientific comfort.

In an attempt to resolve this scoring difficulty, a second scoring scheme was used

for the final analysis. This approach involved scoring each individual for all bands

visible within a range of molecular weights. For instance, between 3000 and 600 base

pairs. As scoring progressed it became easier to resolve one band from another for a

given primer group. This method is similar to that used to score alleles in starch gel

electrophoresis but scoring each band individually rather than alleles.

RAPD markers are inherited in a dominant fashion and as such are di-allelic.

Presence or absence of a given band is treated as one of two alleles at a particular locus

identified by band location. Based on this inheritance, each scored band for all

individuals in a population was assigned a value of (1) for the presence of a marker band

or (0) for the absence of the same marker. Due to requirements of analysis software and

to avoid unnecessary "noise," individual deer with amplification failures for any of the

four primers were not considered for analysis. This had the effect of removing 17

individuals from analysis but ensured that the same individual DNA samples were used

across all four primers.

Scored data derived using this method, the second scoring scheme, and the

calibration mentioned above, may be found in Appendix I. It should be noted that,

although some band weights are the same for different primer sets, they should not be

misinterpreted as the same fragment of amplified DNA. Rather, bands from different
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primers that have the same molecular weights simply reflect a similar length fragment but

would have a different base pair sequence.

F. Data Analysis:

Raw band data was analyzed using the PHYLIP 3.6a phylogenetic inference

software package (Felsenstein, 2000). This software uses the MS Windows™ platform

and provides a variety of analysis tools for molecular and population genetics. The

programs described below are contained within the PHYLIP package.

Before analysis, the raw data was resampled using SEQBOOT to produce a set of

replicate data sets from the original set (Felsenstein, 1985). The SEQBOOT program

samples n characters in the data, randomly, with replacement. The resulting dataset has

the same total number of individuals as the initial dataset, with some individuals being

duplicated and some left out (table 3). One of the primary assumptions for bootstrap

analysis is independence of mutation resulting in presence or absence of a fragment.

With RAPD fragments, some bands may be influenced by the presence or absence of

other bands as shown by Perez et al. (1998), calling the assumption of independent

mutation into question and casting doubt on validity of bootstrap analysis.

Table 3.

Sample input data file for SEQBOOT showing correct formatting of data for analysis.

5 6

Alpha AACAAC
Beta AACCCC
Gamma ACCAAC
Delta CCACCA
Epsilon CCAAAC
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Data was bootstrap resampled 100 times using SEQBOOT. The resulting 100

replicate datasets were then used to calculate a genetic distance matrix using RESTDIST,

a program designed to address restriction fragments, but which may also be used for

RAPD fragments (Felsenstein, 2000). The RESTDIST matrix for this study is a modified

form of the Nei and Li (1979) genetic distance method, and assumes that fragments are

accidental byproducts from random mutation of the DNA nucleotide sequence (figure 8).

This mutation model for fragments assumes a Jukes-Cantor (1969) model of change.

The restriction fragment distance, which is used here for RAPD fragments, is the

average probability that no new primer site will occur in between the ends of a fragment,

and that the ends of the fragment do not mutate. Operon Technologies™ RAPD primers

are 10 base pairs long. This allows the convenient assumption, which seems valid, that a

pair of lObp primers mimics the behavior of a 20-nucleotide restriction site for the

purposes of this algorithm. Resulting distance matrices are in the form of a square, one

for each replicated dataset.

In order to visualize information contained in the data matrix, a tree branching

diagram must be calculated. For these data, the PHYLIP program FITCH was used to

create tree branching representations (Felsenstein, 2000). FITCH uses the Fitch-

Margoliash least squares method for tree calculation based on data in a pairwise distance

matrix. This method assumes each distance is independent of the others in the matrix,

and that distance between each pair of individuals is from a distribution in which the

expected amount of mutation is the sum of values from one branch tip to the other (figure

9). Both these assumptions are somewhat dubious, as independence may not hold for

most types of data including RAPD fragments. The FITCH algorithm computes the sum
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of squares of the distance between two individuals and then minimizes that value by

iterative calculation in order to find the shortest branch length for the resulting tree.

\2s

2-Q s

where : Q - probability of no mutation

s = mutation site length

Figure 8.

Modified form of the Nei and Li equation used by the RESTDIST program in PHYLIP
(Felsenstein, 2000).

sum of squares =

' j

where

nM- d*Y

a.

D = observed distance between species i and j

d - expected distance

n = number of times each distance is replicated

p = 2

Figure 9.

Least squares distance algorithm used by the PHYLIP program FITCH to

calculate genetic distance (Felsenstein, 2000).

The output from the FITCH program is an unrooted tree, or in this case 100

unrooted trees, one for each replicate created in the bootstrap step. Branch length

corresponds roughly to substitutions per base in the DNA sequence.

The final analytical step for the data involved creating one consensus tree from

the 100 replicated samples (figure 10 and 11). The PHYLIP program CONSENSE

accomplishes this using the extended majority rule to create a consensus tree diagram
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(Felsenstein, 2000). Under this system, any set of individuals that cluster together in

more than 50% of the trees calculated is placed in the final consensus tree. That is, if a

group of individuals is present in more than 50 replicate trees, it is placed in the final tree.

CONSENSE then adds other sets of species in order of frequency in which they appear

until the entire tree is resolved. Included groups of individuals must not contradict

another group that appears with greater frequency. Resulting tree branch lengths are

numbered by the number of times a group appeared in replicated trees.

Tree diagrams were drawn using TreeView 1.6.1, which reads tree files from a

variety of programs and converts the file into a modifiable, presentation format.

TreeView software also enables manipulation of tree diagrams including collapse or

separation of groups, choice of out-group, and type of branch diagram drawn. To avoid

presenting an arbitrary representation of the data, no post-statistical (i.e. after running

SEQBOOT) changes have been made. Both a rectangular tree diagram and a radial

dendrogram representation are depicted in figure 10 and 11. Both trees are statistically

unrooted, although square diagrams are drawn using an arbitrary rooted out-group for

visualization (figure 10 and 11).

III. Results:

Figure 10 is an unrooted radial tree diagram from bootstrap resampled original

RAPD fragment data. Numbers at each fork represent the number of replicate samples

out of 100, in which a given group of samples clustered together. Branch length

represents the confidence level of a given cluster based on number of times a group was

present in the bootstrapped data. Each of the hundred replicates was weighted and the
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genetic pairwise distance value multiplied by that factor to create a total final value for

each individual. The first group (cluster B), clustering together 98 times, includes

individuals from both translocation source populations (W, S) and recipient populations

(G, H) with one individual from the native group (M7). The second cluster (cluster A),

occurring 84 times was exclusively composed of Marion County (native) deer. All other

clusters occur in less significant numbers with the exception of one cluster between two

individuals 3W and 21H. Landry and Lapointe (1997) recommend considering bootstrap

values greater than 70% significant.

Figure 1 1 is a phylogram of the identical data in figure 10. The outgroup for this

diagram is arbitrary. Again, as in figure 10, the cluster (A) containing the "native"

Marion County individuals cluster together with the Wisconsin deer 16W the next sister

group. In this diagram, branch lengths roughly correspond to substitutions in the base

pairs of DNA from the individuals (Felsenstein, 2000). In both diagrams the native

control individual M7, clusters outside the (A) group of other native deer clustering

instead with a Wisconsin deer. It should be noted that this clustering with the Wisconsin

deer does not occur in a significant number of possible trees.
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22H

S= Sandhill Deer Farm, WI
W= Northern Wisconsin

G= Callaway Gardens, GA
H= Harris Co., GA
M= Marion Co., GA

Figure 10.

Unrooted consensus radial tree diagram.
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occurred.
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Raw band scoring data may be found in Appendix I, organized by population,

with individuals in the vertical columns and fragment length for each unique fragment on

the horizontal.

IV. Discussion:

If differences in genetic variation and allele frequency between the experimental

populations exist, it is possible that these differences arose from the translocation event in

question. If the Harris and Gardens populations are more genetically similar to the

Wisconsin and Sandhill deer than to local native herds, then the translocation can be

considered to have had some measurable effect. If the study herd is more similar to local

populations, then the opposite would be true and non-local individuals did not make a

significant reproductive contribution to present populations. Since RAPD analysis has

not been used previously in this way, results may differ from those seen using protein

isozymes or other methodologies.

Conservatively, it seems that the intention of the historical translocation was

realized. Specifically, interaction between native deer herds and translocated individuals

is present in the data, indicating that the translocation positively influenced local deer

populations. While the amount of interaction cannot be well quantified using these

techniques, it is supported at the immediate local level in the study populations.

The local recipient populations (G, H) and source populations (W, S) cluster

together 98 times out of 100. This seems to indicate a genetic similarity between sample

individuals likely due to interbreeding and hybridization of native deer populations with

translocated populations. The second strong cluster, occurring 84 times in the bootstrap,

was exclusively composed of Marion County (native) deer. No populations other than
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Marion County are represented in the cluster, suggesting that the native population is

unaffected by translocated genes. All other clusters occur with far less frequency.

However, there is little evidence to support a regional impact from this

translocation effort. Tissue samples from Marion County showed significantly different

genetic stock from those within the Gardens or Harris County populations. Again, an

actual rate of introgression is difficult to quantify but no significant impact on the Marion

County population seems to have occurred. No evidence in this study would suggest that

introgression rate is constant in all geographic directions, and this lack of gene flow to

Marion County may not hold true for other counties in the region.

The tight clustering of Harris County and Callaway Gardens deer from Georgia

with northern deer from Sandhill and north Wisconsin indicates very little difference

between the four populations. In fact, the greatest number of times a sub-cluster is found

in the replicates is 38 - far below any significant cutoff. By contrast, the Marion County

deer cluster together in 84 replicates, indicating a greater confidence that the two clusters

are significant.

In addition to inherent uncertainty, RAPD fragments have the additional

complication of fragment reproducibility. Previous studies consider bootstrap values

greater than 70 as significant (Landry and Lapointe, 1997). Discussions here are based

on that broad rule. The native "control" population clusters together in 84% of the

bootstrap samples, indicating a great degree of confidence that this population is discreet

from others in the study (figure 1 1). Other clusters occur less frequently indicating less

difference between populations using the 70% threshold for significance.
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V. Conclusions:

My results support findings of previous studies regarding the local-scale genetic

impact of translocations. Ellsworth et al. (1994a, 1994b) and Leberg et al. (1999) found

genetic evidence from translocation in the immediate area around translocation sites for

white-tailed deer. However, little impact was seen on a regional scale. As shown in

figures 10 and 11, native Marion County control deer have not experienced significant

gene flow from translocated individuals placed in the Harris County and Callaway

Gardens populations. The latter populations, however, cluster closely with individuals

from source populations in Wisconsin.

For example, some clusters are composed of Gardens individuals or Gardens and

Harris individuals. This is expected, since both populations are from the same area and

have only been intermittently separated by a fence for the past ten years. Because of this,

it is likely that the H and G populations share genetic information. Other groups are

composed of Harris, Gardens, and Sandhill or Harris, Gardens, Wisconsin individuals.

This clustering indicates a similarity between northern deer source populations and the

southern deer where they were translocated. Note, however, that there is not a high

degree of confidence in these smaller clusters. On the other hand, there is statistical

significance (84%) for the cluster containing all Marion County individuals except M7.

The M7 individual clustered more closely with a Wisconsin deer, 9W. All remaining

sample individuals cluster together in 98% of the bootstrap resamples and include both

Wisconsin populations and both populations that received translocated individuals. This

indicates that all local deer sampled near the historical translocation event share genetic

information similar to populations in Wisconsin where the original source population was



www.manaraa.com

35

gathered. However, deer in Marion County share little relative genetic similarity

indicating no impact from the Harris County translocation event approximately 50 miles

away.

Recall also that an original conclusion by Ellsworth et al. (1994a, 1994b) was

that southern deer populations exhibited greater genetic variation in mitochondrial DNA

than their northern counterparts. This is likely a result of recent glaciation in North

America, which allowed older southern populations to persist while their northern

counterparts were forced to recolonize more recently. While RAPD PCR used in my

study is not as fine-scale as the mtDNA markers of the Ellsworth (1994a, 1994b) studies;

recent recolonization would account for the clustering of genetically similar deer in

Wisconsin and Sandhill populations. The decreased genetic diversity indicated supports

findings by Ellsworth (1994a, 1994b) and lends some credence to the results presented

here.

As a final note, it is interesting that the Marion County "native" group clusters

most closely with a group from Callaway Gardens (183G, 78G, 72G, 177G). The cluster

is not significant, but the Gardens population may be more closely related due to its

partial separation from other deer in the area by tall fencing for more than a decade. The

partial fencing would then have served as a localized impediment to gene flow.

Wisconsin deer released in Harris County would have had greater genetic disturbance

from human impact than those in the Gardens. This would lead to more movement of

deer and perhaps exchange of genetic information making the Harris deer more similar to

those in Wisconsin. The Gardens population, partially isolated, would have maintained a
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greater proportion of native genetic information, making them more similar to the Marion

deer.

A. Suggestions for Further Study:

A comparison of RAPD data and analysis with other types of molecular

population analysis on identical individuals could illuminate the degree of accuracy

sacrificed when using RAPD PCR. Regarding this study in particular, a larger sample

size of native populations would allow greater confidence in the stated conclusions.

Due to potential problems using RAPD analysis in this study, further investigation

of alternative methods seems prudent. Microsatellite primers might be used successfully

as markers for population genetic studies due to high levels of polymorphism and broad

distribution. The limitation on their use here is the development of primer sets for

specific organisms. However, microsatellite markers are available for white-tailed deer

(Dewoody et al., 1995). PCR can also be used to amplify cytochrome-b genes from deer,

as was done by Carr and Hughes (1993) to study introgression of genes from mule deer

into white tail populations. Although potentially more accurate, these techniques would

likely resolve allelic bands unscorable without radioassay techniques. Unless two alleles

differ in molecular weight significantly, ethidium bromide will not distinguish between

bands. There is the possibility of isolating an allelic system, which varies sufficiently to

resolve differences between experimental populations while remaining consistent within

populations. However, this possibility would be unknown until late in the experimental

process after a large commitment of time and funds.
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B. Management Implications:

This study indicates that evidence for success or failure of a translocation strategy

for whitetail deer can be detected years after the event at least on a local scale. However,

the results and methods used here have some application in a broader sense. Lomolino

and Channell (1995) indicated a need for extensive planning to account for population

genetic structure as part of any translocation strategy. In today's political and economic

environment, an in-depth study is often not feasible. By using RAPD PCR as an

expedient method to estimate genetic structure, source and destination populations can be

matched as closely as possible. In this way, translocation can be made more successful

and location of translocation or stocking events can be optimized. More closely matched

populations will disrupt natural biogeography less and allow greater survivability of

translocated animals which may be better suited to a particular ecosystem type. For

example, large healthy deer were translocated from Wisconsin to Louisiana scrubland in

the hopes that larger Louisiana deer would result. In fact, the opposite was true. When

faced with different climate and food availability, the translocated deer produced smaller,

less healthy, offspring than the native Louisiana populations (Day et a!., 1999).

Subsequent monitoring using RAPD PCR or some similar method can also be

used to monitor translocation success or failure inexpensively for many years. Although

RAPD PCR is not as powerful as alternative techniques, it is significantly less time-

consuming and expensive. In light of limited funding for rare species conservation, this

technique may be the only affordable alternative.

This approach may also be useful in addressing questions of conservation law.

For example, a recent dispute between the governor of Maine and National Marine
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Fisheries Service revolves around molecular analysis. A question arose regarding

whether populations of endangered salmon were native populations deserving of special

protection or the result of 130 years of stocking efforts. Based on analysis of scale

samples, the data showed that stocking was unsuccessful and native populations persist.

There is speculation by scientists involved, about ambiguity and interpretation of the

data. At stake is the level of protection the fishes will receive in Maine (Young, 2001).

RAPD PCR could resolve the question of genetic similarity in an expedient manner and

allow subsequent stocking to reflect the genetics of natural salmon populations.

One can envision a situation in which sampling in the field and RAPD analysis

precedes each translocation for a rare species recovery, perhaps while the translocated

species are held in captivity. The results of analysis could then be compared with

previous RAPD surveys for the recipient population to determine the best location to

release the new individuals for minimal genetic disruption. The expense and logistics

involved would be far less than a more comprehensive population genetic analysis and

could be conducted by scientists in the field without sending samples away for lengthy

analysis. This approach could be readily adapted to a variety of situations.
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Band Scoring Data:
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Deer ID OPC
-8

Band Size 2050 1550 1530 1500 1420 1410 1400 1380 1300 1200 1100 1010 990 890 850 450

M1 1

M2
M3
M4
M5
M6
M7
Deer ID OPC-8

Band Size 2050 1550 1530 1500 1420 1410 1400 1380 1300 1200 1100 1010 990 890 850 450

22H 1

62H 1 1 1 1 1

76H

21H
70H 1 1 1 1

60H 1 1 1 1 1

84H 1 1 1

65H 1

48H 1 1 1

59H 1 1 1

58H 1 1

66H 1 1 1 1

64H 1 1

61

H

1 1 1 1 1 1

Deer ID OPC-8

Band Size 2050 1550 1530 1500 1420 1410 1400 1380 1300 1200 1100 1010 990 890 850 450

72G 1 1 1

78G 1 1 1

183G 1 1 1 1

94G r

1 1 1

177G 1 1 1

83G 1 1 1 1

171G 1 1 1

200G 1 1

170G

82G 1 1 1

Deer ID OPC-8

Band Size 2050 1550 1530 1500 1420 1410 1400 1380 1300 1200 1100 1010 990 890 850 450

1W 1 1 1 1
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2W 1 1 1

3W 1

4W 1

6W 1 1 1 1 1

8W 1 1 1

9W
11W 1 1 1 1

12W 1 1 1 1 1

13VV 1

14W 1 1 1

15W 1 1 1

16W 1 1 1

Deer ID OPC-8

Band Size 2050 1550 1530 1500 1420 1410 1400 1380 1300 1200 1100 1010 990 890 850 450

11S 1 1

14S 1 1 1

12S 1 1 1 1

17S 1 1 1

15S 1 1 1

26S 1 1

25S 1 1

24S 1 1 1

23S 1 1 1 1 1

22S 1 1 1 1

Deer ID OPC
-9

Band Size 2400 2300 1900 1600 1500 1450 1400 1350 1300 1200 1100 990 910 810 690

M1 1 1

M2 1 1

M3 1 1 1

M4 1 1

M5 1 1

M6 1 1 1

M7 1 1

Deer ID OPC-9
Band Size 2400 2300 1900 1600 1500 1450 1400 1350 1300 1200 1100 990 910 810 690

22H 1 1 1

62H 1 1 1 1 1 1 1

76H 1 1 1 1 1 1 1 1

21

H

1 1 1 1 1 1

70H 1 1 1 1 1

60H 1 1 1 1

84H 1 1 1 1

65H 1 1 1



www.manaraa.com

4S

48H 1 1

59H 1 1

58H 1 1 1 1 1

66H 1 1 1 1 1

64H 1 1 1

61

H

1 1 1 1 1

Deer ID OPC-9
Band Size 2400 2300 1900 1600 1500 1450 1400 1350 1300 1200 1100 990 910 810 690

72G 1 1 1 1 1 1 1 1 1 1 1 1

78G 1 1

183G 1 1 1 1 1 1 1 1 1

94G 1 1 1 1 1 1 1 1

177G 1 1 1 1 1 1 1 1

83G 1 1 1 1 1 1 1 1 1

171G 1 1 1 1 1

200G 1 1 1 1 1 1

170G 1 1 1 1 1 1 1

82G 1 1 1 1 1 1 1 1

Deer ID OPC-9

Band Size 2400 2300 1900 1600 1500 1450 1400 1350 1300 1200 1100 990 910 810 690

1W 1 1 1 1 1 1 1 1

2W 1 1 1

3W 1 1 1 1 1 1

4W 1 1 1 1

6W 1 1 1 1 1

8W 1 1 1 1

9W 1 1 1

11W 1 1 1 1 1 1

12W 1 1 1 1 1

13W 1 1 1 1

14W 1 1 1 1 1 1 1 1 1

15W 1 1 1 1 1 1 1 1

16W 1 1 1 1 1 1 1 1 1

Deer ID OPC-9

Band Size 2400 2300 1900 1600 1500 1450 1400 1350 1300 1200 1100 990 910 810 690

lis 1 1 1 1

14S 1 1 1 1 1

12S 1 1 1 1 1

17S 1 1 1 1 1 1

15S 1 1 1 1 1

26S 1 1 1 1 1 1

25S 1 1 1 1 1

24S 1 1 1 1 1 1 1

23S 1 1 1 1 1 1

22S 1 1 1 1 1
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Deer ID OPT-
4

Band Size 1100 1050 1000 925 900 750 720 675 600 590 580

M1

M2
M3
M4
M5
M6
M7 1 1 1

Deer ID OPT-4

Band Size 1100 1050 1000 925 900 750 720 675 600 590 580

22H
62H 1

76H 1

21

H

1 1

70H 1 1

60H 1

84H 1 1

65H 1

48H

59H 1 1

58H 1 1

66H 1 1

64H 1

61

H

Deer ID OPT-4

Band Size 1100 1050 1000 925 900 750 720 675 600 590 580

72G 1

78G 1

183G 1 1 1

94G 1

177G

83G 1 1 1

171G 1 1

200G 1 1

170G 1 1

82G 1 1 1

Deer ID OPT-4

Band Size 1100 1050 1000 925 750 720 675 600 590 580

1W 1 1 1

2W 1 1 1 1

3W 1 1 1 1

4W 1 1 1

6W 1 1 1 1 1

8W 1 1 1 1

9W 1 1 1
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11W 1 1 1

12W 1 1

13W
14W 1 1 1 1

15W 1 1 1

16W 1

Deer ID OPT-4

Band Size 1100 1050 1000 925 900 750 720 675 600 590 580

11S 1

14S 1 1

12S 1 1 1

17S 1 1

15S 1 1

26S 1 1

25S 1 1

24S 1

23S 1

22S 1 1

Deer ID OPC
-6

Band Size 3000 2500 1900 1550 1500 1490 1480 1470 1400 1390 1000 910 900 890 800 750 70!

M1

M2
M3
M4
M5
M6
M7 1 1 1 I

Deer ID OPC-6

Band Size 3000 2500 1900 1550 1500 1490 1480 1470 1400 1390 1000 910 900 890 800 750 701

22H 1 1 1 1

62H 1 1 1 1

76H 1

21

H

1 1 1

70H 1 1 1 1 1

60H 1 1 1

84H 1 1 1 1 1 1

65H 1

48H *~
1

59H 1 1 1

58H 1 1

66H 1

64H 1 1
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61

H

1 1 1 I

Deer ID OPC-6

Band Size 3000 2500 1900 1550 1500 1490 1480 1470 1400 1390 1000 910 900 890 800 750 70I

72G 1 1 1 1 1

78G 1 1

183G 1 1 1 1 1

94G 1 1 1 1

177G 1 1 1 1 1

83G 1 1 1 1 1 1 1

171G 1 1 1

200G 1 1 1 1 1 1

170G 1 1 1 1

82G 1 1 1 1 1

Deer ID OPC-6

Band Size 3000 2500 1900 1550 1500 1490 1480 1470 1400 1390 1000 910 900 890 800 750 70<

1W 1 1 1

2W 1 1 1

3W 1 1 1 1

4W 1 1 1 1

6W 1 1 1

8W 1 1 1 1

9W 1 1 1

11W
12W 1 1 1 1 1

13W
14W 1 1 1 1

15W 1 1 1 1

16W 1

Deer ID OPC-6

Band Size 3000 2500 1900 1550 1500 1490 1480 1470 1400 1390 1000 910 900 890 800 750 70!

11S 1 1 1 1

14S 1 1 1

12S 1 1 1

17S 1 1 1

15S 1 1 1 1 1 1

26S 1 1 1 1 1 1 1

25S 1 1 1 1 1

24S 1 1

23S 1 1 1

22S 1 1 1

Figure 12

Gel scoring data for all analyzed DNA fragments.
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Appendix II

Sample RAPD PCR Gel Images:

All gels were photographed using a Polaroid™ camera equipped with a red filter. Film

was exposed for from 6-8 seconds using an f-stop of 16. Please contact the author for all

gels used for analysis.

OPC-6 Harris
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OPC-6 Sandhill
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OPC-9 Harris
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OPC-9 Sandhill 2
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Appendix HI

Gels, Buffers, Protocols:

EDTA Stock Solution

186.1g disodium ethylenediaminetetraacetate • H2O (EDTA)

800.0mL deionized H2

Stir

Adjust pH to 8.0 using NaOH pellets (approx. 20g NaOH)

Filter or autoclave

TBE Buffer Solution 5X

54.0g Tris

27.5g Boric Acid

20.0mL 0.5M EDTA (pH 8.0)

Bring to 1 L volume using deionized H2O

Dilute to IX concentration using deionized H2O

1 .4% Agarose Gel

2.8g Agarose

200.0mL IX TBE buffer

lO.OuL Ethidium Bromide

Melt using conventional microwave, pour, and insert well comb
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0.7% Agarose Gel

0.3 5g Agarose

50.0mL IX TBE buffer

2.5uL Ethidium Bromide

PCR Reactants

12.5uL Qiagen, Inc. Master Mix

10.5|iL deionized H2O

l.OuL Operon Technologies, Inc. Primer

l.OuL template sample DNA

Thermal Profile

Melting Phase 94 C 1min.

Annealing Phase 40 C 1min.

Elongation Phase 72 C 2min.

X 45 cycles

Hold Phase OC 10-20 hr.
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DNA Isolation Profile

1. Each tissue sample was placed in a sterile 1.5ml microcentrifuge tube. Tissue was

lysed using 20ul of Proteinase K and 1 80jul of proprietary buffer ATL added to each

tube. Samples were incubated at 55°C in a shaking water bath overnight.

2. After lysis, samples were treated with 4|il of RNase to remove any residual RNA,

which could interfere with PCR.

3. 200 ill of proprietary buffer (AL) was added to each sample and incubated for lOmin.

at 70°C on an MJ Research PTC- 100 thermal cycler.

4. 200ul of absolute ethyl alcohol was added to each tube.

5. The entire mixture was then pipetted into a DNeasy™ spin column and centrifuged

for lmin. Column flow through was discarded.

6. The column was placed in a new collection tube and 500ul of proprietary buffer

(AW1) was added and centrifuged for lmin. Flow through was discarded.

7. Step 6 was repeated using proprietary buffer (AW2) and centrifuged for 3min.

8. Isolation columns were placed in final collection tubes and 200ul of proprietary

buffer (AE) was placed in each tube. Tubes were centrifuged for lmin. This last step

was repeated and the collection tube now containing eluted DNA was labeled and

stored at -20°C.
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